X-Ray structure analyses of diphosphinidenecyclobutene and its chelate type tetracarbonylmolybdenum(0) complex

Kozo Toyota, Katsuya Tashiro, Masaaki Yoshifuji
Department of Chemistry, Faculty of Science, Tohoku University, Aoba, Sendai 980 (Japan)
Ikuko Miyahara, Atsuhiro Hayashi and Ken Hirotsu
Department of Chemistry, Faculty of Science, Osaka City Unicersity, Sumiyoshi, Osaka 558 (Japan)
(Received February 8, 1992)

Abstract

The structure of [(E,E)-3,4-bis(2,4,6-tri-t-butylphenylphosphinidene)-1,2-bis(trimethylsilyl)cyclobutene\}tetracarbonylmolybdenum(0) has been analyzed by X-ray crystallography. The structure of the free ligand, diphosphinidenecyclobutenc, has also becn analyzed and compared with that of the metal carbonyl complex.

Bidentate diphosphane ligands with $s p^{3}$-type hybridized phosphorus atoms such as 1,2-bis(diphenylphosphino) ethane (dppe) have been widely used in organometallic chemistry as well as in organic synthesis [1]. In contrast, bidentate phosphaalkene ligands containing $s p^{2}$-type hybridized phosphorus atoms are rarely used because of their instability at a low-coordinated phosphorus atom. However, our recent strategy of steric protection using bulky substituents has permitted us to isolate those unusual compounds as stable species [2]. By introducing an extremely bulky 2,4,6-tri-t-butylphenyl group (Ar group) into a molecule, we have been successful in preparing various types of compounds carrying phosphorus atoms in low coordination states such as diphosphenes [3], phosphaalkenes [4], and phosphacumulenes [5]. Some sterically protected 1,4-diphospha-1,3-butadienes had been prepared by Appel et al. [6-8] and more recently a 2,2 -biphosphinine had been synthesized by Mathey et al. [9] as a phosphorus analogue of bipyridine.

Recently, Märkl et al. [10] and we [11] have independently reported the preparations of 3,4-bis(2,4,6-tri-t-butylphenylphosphinidene)-1,2-bis(trimethylsilyl)cyclobutenes ($\mathbf{4}$ and 5) via sigmatropic rearrangement from 1,6-diphospha-1,2,4,5hexatetraene (3) and/or diethynyldiphosphane (2), which was prepared from trimethylsilylethynylphosphane (1). The diphosphinidenecyclobutenes $\mathbf{4}$ and $\mathbf{5}$ might

[^0]

Fig. 1. X-Ray structures of 4 (left) and 6 (right) showing the atom hoding whome
be regarded as conformationally rigid bidentate phosphorus ligands analogous to dppe, since they are expected to be planar molecules of dimethylenecyclobutene framework. Thus, the structures of the coordination site of the metal complexes [12] as well as the free ligands are of interest. We report here the crystal structures of both (E, E)-diphosphinidenecyclobutene 4 and its molybdenum(0) emplex 6 [13].

Figure 1 depicts ormer drawings of 4 and $6[14]$. Selected bond lengths and angles, dihedral angles, and intramolecular short contacts for 4 and 6 are listed in Tables 1 and 2, respectively. The cyclobutene ring in 4 is approximately planar within 0.04(1) A with $\mathrm{Pl}, \mathrm{P} 2, \mathrm{Sil}, \mathrm{Si} 2, \mathrm{C} 5$, and C 23 deviating by $-0.11(1), 0.42(1)$. $-0.30(1), 0.27(1), 0.20(1)$, and $0.78(2)$ A. respectively. The folding angle of the cyclobutene ring at $\mathrm{Cl}-\mathrm{C} 3$ axis is 80°. The phenyl ring [$\left.\mathrm{C} 5-\mathrm{C} 10\right]$ makes an angle of 85.2° with the cyclobutene ring, while the phenyl ring [C23-C28] makes an angle of 115.8° with this plane. This distorted conformation of 4 forms a contrast to (E, Z)-3,4-bis(2,4,6-tri-f-butyphenylphosphinidene)-1.2-bis(rimethylsilyl)cyclob: tene (5) [10.11] where a pseudo mirror plane goes through the oyclobutene ring. The (E,Z)-derivative (5), which docs not react with metal carbonyls, has its molecular surface almost completely covered by hydrogen atoms. The CPK modeling of 4 shows that the $\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$ side of the molecule has a concavity. into which metal carbonyls are able to enter to ract. The coordination of two phosphorus atoms of 4 to a molybdenum atom makes complex 6 take a more regular form than 4 itself, although the conformation of 4 is similar to that of the ligand moiety in 6. The complex 6, except for two trimethylsily groups, has an

Table 1
Selected bond lengtis $\left({ }^{\circ}\right)$ and angles $\left({ }^{(}\right)$, dihedral anyles $\left(^{\circ}\right)$, and intramolecular short contacts $\left({ }^{\circ}\right)$ for 4^{a}

Bond lengths

C1-C2 1.498(8)
C2-C3 1.492(8)

$\mathrm{C} 1-\mathrm{C} 4$	$1.493(8)$	$\mathrm{P} 1-\mathrm{C} 5$	$1.841(6)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.678(6)$	$\mathrm{P} 2-\mathrm{C} 23$	$1.852(6)$

C3-C4 1.400(9)
P2-C2 1.676(5)
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2121.8(4) \quad \mathrm{C} 1-\mathrm{Pl}-\mathrm{C} 5110.7(3)$
C2-C1-C4 88.0(4)
$\mathrm{P} 1-\mathrm{Cl}-\mathrm{C} 4150.2(5)$
C2-P2-C23 108.0(3)
C1-C2-C3 88.0(4)
P2-C2-C1 122.5(4)
P2-C2-C3 147.7(4)
$\mathrm{P} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{P} 2 \quad 15.5(8)$
$\mathrm{Si} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Si} 2$ 15(1)
$\mathrm{C} 4-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$ 5.4(5)
$\mathrm{P} 1-\mathrm{Cl}-\mathrm{C} 4-\mathrm{Si} 2-8(1)$
C1-P1-C5-C6 -96.3(5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-5.7(5)$
P2-C2-C3-Sil -29(1)
C2-P2-C23-C24 103.2(5)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl}-\mathrm{C} 2-5.7(5)$
Intramolecular short contacts

$\mathrm{P} 1 \cdots \mathrm{C} 13$	$3.15(1)$	$\mathrm{P} 2 \cdots \mathrm{C} 32$	$3.208(8)$	$\mathrm{C} 5 \cdots \mathrm{C} 44$	$3.46(1)$
$\mathrm{P} 1 \cdots \mathrm{C} 21$	$3.074(8)$	$\mathrm{P} 2 \cdots \mathrm{C} 38$	$3.234(8)$	$\mathrm{C} 40 \cdots \mathrm{C} 42$	$3.68(1)$
$\mathrm{P} 2 \cdots \mathrm{C} 30$	$3.370(8)$	$\mathrm{C} 1 \cdots \mathrm{C} 22$	$3.47(1)$	$\mathrm{C} 43 \cdots \mathrm{C} 46$	$3.57(1)$

${ }^{\text {a }}$ Numbers in parentheses are estimated standard deviations.

Table 2
Selected bond lengths (A°) and angles $\left({ }^{\circ}\right)$, dihedral angles $\left({ }^{\circ}\right)$, and intramolecular short contacts (A°) for 6^{a}

Bond lengths
C1-C2 1.483(6)
C2-C3 1.466(6)
P1-Mo 2.539(1)

C3-C4 1.382(6)
P2-C2 $1.686(4$
P2-Mo 2.526(1)

C1-C4 1.469(6)
P2-C23 $1825(4)$

Bond angles
C2-C1-C4 87.9(3)
P1-C1-C4 151.2(3)
$\mathrm{P} 2-\mathrm{C} 2-\mathrm{Cl} 119.9(3)$
$\mathrm{P} 1-\mathrm{Mo}-\mathrm{P} 2-78.10(4)$
Mo-P1-C1 109.9(1)
P2-C2-C3 151.9(3)
Mo-P2-C2 110.7(1)
C2-C3-C4 92.0(4)
C1-P1-C5 109.7(2)
C2-P2-C23 108.7(2)
Dihedral angles
$\mathrm{C} 4-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$ 3.3(3)
$\mathrm{P} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{P} 210.1(5)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 5-\mathrm{C} 6$-77.5(4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-3.5(3)$
P1-C1-C4-Si2 - $19(1)$
$\mathrm{P} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Si} 1-9(1)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-3.5(3)$
$\mathrm{Si} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Si} 211.8(8)$
Intramolecular short contacts

$\mathrm{P} 1 \cdots \mathrm{C} 13$	$3.286(8)$	$\mathrm{C} 1 \cdots \mathrm{C} 14$	$3.248(8)$	$\mathrm{C} 21 \cdots \mathrm{C} 50$	$3.434(9)$
$\mathrm{P} 1 \cdots \mathrm{C} 14$	$3.293(7)$	$\mathrm{C} 2 \cdots \mathrm{C} 40$	$3.348(6)$	$\mathrm{C} 31 \cdots \mathrm{C} 48$	$3.447(8)$
$\mathrm{P} 1 \cdots \mathrm{C} 22$	$3.276(6)$	$\mathrm{C} 10 \cdots \mathrm{C} 44$	$3.419(8)$	$\mathrm{C} 43 \cdots \mathrm{C} 46$	$3.52(1)$
$\mathrm{P} 2 \cdots \mathrm{C} 30$	$3.244(6)$	$\mathrm{C} 13 \cdots \mathrm{C} 48$	$3.36(1)$		
$\mathrm{P} 2 \cdots \mathrm{C} 40$	$3.220(6)$	$\mathrm{C} 21 \cdots \mathrm{C} 47$	$3.487(8)$		

${ }^{a}$ Numbers in parentheses are estimated standard deviations.

approximate two-fold axis which goes through the molybdenum atom and the midpoint of $\mathrm{Cl}-\mathrm{C} 2$ bond. The cyclobutene ring of 6 is almosi planar within $0.02(1)$ \AA with P1, P2. Sil. Si2. C5, (23. and Mo deviating by 0.163(8). - $0.183(8) .0 .087(9)$. $-0.335(9), 0.50(1),-0.42(1)$ and $-0.10(1) \AA$, respectively. The folding angle of
 angles of 76.3 and 102.7 wh the cyclobutenc ring, respectively. Figure 2 shows the octahedral framework around the molybdenum atom of compound 6. where a mirror plane goes through Mo. (47, C48. midpoint of P1-P2 and midpoint of (49-C50.

The corresponding bond distances and angles of the cental π-system in $\mathbf{4}, \mathbf{6}, \mathbf{5}$.
 (7) [8] are in good agrecment if the standard deviations are tahen into account. The angles $(4-\mathrm{Cl}-\mathrm{P} \text { and (3. (2 P2 are opened to 150.26) and } 147.74)^{\circ}$ in 4. and $151.2(3)$ and $151.9(3)$ in 6 . respectively and are comparable to an ancrage vatue of $147.3(4)^{\prime \prime}$ for $7[8], 147.4(5)[11]$ and $147.0(3)[10]$ for 5 refeeting the large steric repulsions among the substuents. The bond distances of PI-No and P2-Mo, and the bond angle of P1-Mo-P2 are 2.530(1), 252611 A and 78.10(4). respectively.

The intramolecular short contacts (Tables 1 and 2) induce the deformation of the bulky Ar groups. which is commonly obscrved for an Ar-P comtaning compound [15]. The phenyl group [$\mathrm{C} 5 \mathrm{Cl0}$] in 4 has an envelope form with (5 serving as the llap. The other phenyl groups in 4 and 6 are in boat toms with 65 and 03 serving as the bow and (8 and 26 as the stert.

Experimental (see Scheme 1)

Preparation of (E.E1-3, - Bis 2 4 , 6-mi-t-butyphenylphosphimidene)-1,2-bis(trimethy/sily$/$ cyclobuthe' (4). The Jiphosphinidenecyclobutene 4 was prepared as described previously [11]. Chlorol2,4,6-ti-t-butylphenyl)phosphine [16-18] was allowed to react with (trimethylsilylethynyllithium to give 2.7 .6 -trit butyphenyltrimethylsilylethynyl)phosphine (1) [19] and the phosphine I was lithiated with wo equiv of thutyllithum in THF at $\cdots 78 \mathrm{C}$. Then 0.5 equiv, of 12 dibromoethane
was added at that temperature to give 1,2-bis(2,4,6-tri-t-butylphenyl)-1,2-bis(trimethylsilylethynyl)diphosphane (2). The diphosphane 2 was unstable towards heat and gradually isomerized, even at room temperature, to a phosphaallenyl compound, 3,4-bis(trimethylsilyl)-1,6-bis(2,4,6-tri-t-butylphenyl)-1,6-diphospha-1,2,4,5hexatetraene (3). This phosphaallenyl compound 3 was further converted, but very slowly, at room temperature to the (E, E)-3,4-diphosphinidenecyclobutene 4. Yellow crystals. M.p.: $160-162^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.39(4 \mathrm{H}, \mathrm{s}$, arom.), $1.56\left(36 \mathrm{H}, \mathrm{s}, o-^{\mathrm{t}} \mathrm{Bu}\right), 1.31\left(18 \mathrm{H}, \mathrm{s}, p-{ }^{\mathrm{t}} \mathrm{Bu}\right)$, and $-0.33\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=162.9 .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta=183.9(\mathrm{dd}, J(\mathrm{PC})=18.3$ and $14.1 \mathrm{~Hz} ; \mathrm{P}=C), 176.2$ (pseudo $t, J(\mathrm{PC})=$ $4.6 \mathrm{~Hz} ; \mathrm{CSiMe}_{3}$), 154.8 (s, o-arom.), 149.5 (s, p-arom.), 136.8 (pseudo $\mathrm{t}, J(\mathrm{PC})=$ 29.0 Hz , ipso-arom.), 121.9 (s, m-arom.), 38.3 ($\mathrm{s}, o-\mathrm{CMe}_{3}$), 35.0 (s, $p-C \mathrm{Me}_{3}$), 33.4 (pseudo $\mathrm{t}, J(\mathrm{PC})=3.7 \mathrm{~Hz}, o-\mathrm{CMe}_{3}$), 31.3 (s, $p-\mathrm{CMe}_{3}$), and 0.4 (s, SiMe_{3}). UV (hexane): $\lambda=255$ ($\log \epsilon 4.37$), 298 (4.39), 314 (4.41), and 368 nm (sh, 3.69). IR (KBr): 1591 and $1477 \mathrm{~cm}^{-1}$. MS m / z (rel. intensity): $746\left(M^{+}, 100\right), 689\left(M^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right.$, 73), and 373 ($\mathrm{ArPC}_{2} \mathrm{Tms}, 36$). The yield of 4 based on 1 was 44% together with 3 (35% yield), after 30 min refluxing in toluene without the isolation process of 2. Because of facile photoisomerization by sunlight between 4 and 5 , the whole procedure treating 4 was carried out in the dark [20*].
$\operatorname{ArP}(\mathrm{H}) \mathrm{Cl} \xrightarrow[\cdot]{\mathrm{LiC}=\mathrm{CTms}} \quad \mathrm{ArP}(\mathrm{H}) \mathrm{C} \equiv \mathrm{C} — \mathrm{Tms} \xrightarrow{\text { 'BuLi }}$
(1)

(2)

(3)

$\mathrm{Ar}=2,4,6-{ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{Tms}=\mathrm{Me}_{3} \mathrm{Si}$
Method A: $\mathrm{Mo}(\mathrm{CO})_{6}, \Delta$; method B:P (thf)Mo(CO) ${ }_{5}$; method C: (bicyclo[2.2.1] hepta-2,5-diene) $\mathrm{Mo}(\mathrm{CO})_{4}$
Scheme 1

[^1]Preparation of [(E,E)-3,4-Bis(2,4,6-tri-t-butylphenylphosphinidene)-1,2-bis(trimethylsilyl)cyclobutene Itetracarbonylmolybdenum (0) (6). The complex 6 was prepared according to the following three methods [12]. A solution of 4 (25.0 mg , 0.033 mmol) and 5.1 mol . equiv. of $\mathrm{Mo}(\mathrm{CO})_{6}(44.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dioxane (2.5 $\mathrm{ml})$ was refluxed in the dark for 1 h (method A). Removal of the solvent under reduced pressure followed by flash column chromatography ($\mathrm{SiO}_{2} /$ pentane) afforded $24.1 \mathrm{mg}(76 \%)$ of 6 . The reaction of 4 with excess (THF)Mo(CO) $5(5 \mathrm{~mol}$ equiv.) in THF at room temperature for 3 h (method B) also afforded the complex 6 in 75% yield. The reaction of 4 with 1.5 mol equiv. of (bicyclo[2.2.1]hepta-2,5-diene)tetracarbonylmolybdenum(0) in refluxing toluene for 20 h (method C) gave the same molybdenum(0) complex 6 in 44% yield.

Crystal data and data collection for 4. The compound 4 was recrystallized from benzene/acetonitrile. $\mathrm{C}_{46} \mathrm{H}_{76} \mathrm{P}_{2} \mathrm{Si}_{2}, M=747.23$, monoclinic, space group $P 2_{1} / n$, $a=9.543(1), b=33.486(3), c=15.218(2) \AA, \beta=99.96(1)^{\circ}, U=4789.6(9) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.037 \mathrm{~g} \mathrm{~cm}^{-3}$, radiation: $\mathrm{Cu}-K_{\alpha}(\lambda=1.5418 \AA), \mu=15.00 \mathrm{~cm}^{-1}$, data collection: ω-scan, 2θ range: $2-120^{\circ}$, number of independent reflections: 5957 , number of reflections used ($I>2 \sigma(I)$): 4075.

Crystal data and data collection for 6. The complex 6 was recrystallized from pentane. $\mathrm{C}_{50} \mathrm{H}_{76} \mathrm{MoO}_{4} \mathrm{P}_{2} \mathrm{Si}_{2}, M=955.21$, monoclinic, space group $P 2_{1} / n, a=$ 16.116(3), $b=12.329(1), c=28.208(7) \AA, \beta=97.89(3)^{\circ}, U=5552(2) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.143 \mathrm{~g} \mathrm{~cm}^{-3}$, radiation: Mo- $K_{\alpha}(\lambda=0.7107 \AA), \mu=3.64 \mathrm{~cm}^{-1}$, data collection: ω-scan, 2θ range: $1-50^{\circ}$, number of independent reflections: 9783 , number of reflections used ($I>3 \sigma(I)$): 6929. Both structures of 4 and 6 were solved using shelx86 [21]. All hydrogen atoms, except for those of p-t-butyl groups, could be located on difference Fourier syntheses. Full-matrix least-squares refinements with anisotropic temperature factors for non-hydrogen atoms and isotropic hydrogens converged to $R=0.075$ and $R_{w}=0.098$ for 4 and $R=0.058$ and $R_{w}=0.059$ for 6 [22]. Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgments. This work was supported in part by Grants-in-Aid for Scientific Research (Nos. 02403008, 02740251, and 02247104) from the Ministry of Education, Science and Culture, Japanese Government and the Asahi Glass Foundation. We thank the Research Centre for Protein Engineering, Institute for Protein Research at Osaka University for computer calculation of X-ray analysis. We also thank Tosoh Akzo Co. Ltd., Hodogaya Chemical Co., Ltd., and Shin-Etsu Chemical Co., Ltd., for chemicals.

References and notes

1 E.C. Alyea and D.W. Meek (Eds.), Catalytic Aspects of Metal Phosphine Complexes, American Chemical Society, Washington DC, 1982.
2 M. Regitz and O.J. Scherer (Eds.), Multiple Bonds and Low Coordination in Phosphorus Chemistry, Georg Thieme Verlag, Stuttgart, 1990.
3 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 103 (1981) 4587 and 104 (1982) 6167.
4 M. Yoshifuji, K. Toyota and N. Inamoto, Tetrahedron Lett., 26 (1985) 1727.
5 M. Yoshifuji, K. Toyota, K. Shibayama and N. Inamoto, Tetrahedron Lett., 25 (1984) 1809; M. Yoshifuji, K. Toyota and N. Inamoto, J. Chem. Soc., Chem. Commun., (1984) 689.

6 R. Appel, J. Hünerbein and N. Siabalis, Angew. Chem., Int. Ed. Engl., 26 (1987) 779.
7 R. Appel, B. Niemann, W. Schuhn and N. Siabalis, J. Organomet. Chem., 347 (1988) 299.
8 R. Appel, V. Winkhaus and F. Knoch, Chem. Ber., 120 (1987) 243.
9 P. Le Floch, D. Carmichael, L. Ricard and F. Mathey, J. Am. Chem. Soc., 113 (1991) 667.
10 G. Märkl, P. Kreitmeier, H. Nöth and K. Polborn, Angew. Chem., Int. Ed. Engl., 29 (1990) 927.
11 M. Yoshifuji, K. Toyota, M. Murayama, H. Yoshimura, A. Okamoto, K. Hirotsu and S. Nagase, Chem. Lett., (1990) 2195.
12 K. Toyota, K. Tashiro and M. Yoshifuji, Chem. Lett., (1991) 2079.
13 A part of this work was presented at the 62nd National Meeting of the Chemical Society of Japan, Sapporo, September 1991, Abstr. No. 2B215.
14 C.K. Johnson, ortep-iI, Oak Ridge National Laboratory Report, ORNL-TM-5138, Oak Ridge, TN, 1976.

15 M. Yoshifuji, N. Inamoto, K. Hirotsu and T. Higuchi, J. Chem. Soc., Chem. Commun., (1985) 1109.
16 M. Yoshifuji, S. Sasaki and N. Inamoto, Tetrahedron Lett., 30 (1989) 839.
17 A.H. Cowley, J.E. Kilduff, N.C. Norman, M. Pakulski, J.L. Atwood and W.E. Hunter, J. Am. Chem. Soc., 105 (1983) 4845.
18 G. Märkl and U. Herold, Tetrahedron Lett., 29 (1988) 2935.
19 G. Märkl and P. Kreitmeier, Angew. Chem., Int. Ed. Engl., 27 (1988) 1360.
20 The synthesis and X-ray structure of ($E, Z)-5$ has been reported independently by us [11] and by Märkl et al. [10]. It should be noted that Märkl et al. assigned a singlet peak ($\delta(\mathrm{P}) 164.91$) in ${ }^{31} \mathrm{P}$ NMR to that for (E, Z)-5 [10]. However, as we have reported in the previous paper [11], (E, Z)-5 was observed in AB pattern ($\delta(\mathrm{P}) 197.4$ and $176.6,{ }^{3} J(\mathrm{PP})=14.6 \mathrm{~Hz}$), although the X-ray structures for (E, Z)-5 were both the same. It seems likely that the spectroscopic data reported by Märkl et al. for " $(E, Z)-5$ " correspond to those of our ($E, E)-4(\delta(\mathrm{P}) 162.9$), the structure of which was confirmed by the X-ray analysis as shown in this text. This discrepancy may be due to the facile $E-Z$ photosiomerization [11], which can take place during the recrystallization process for the X-ray analysis. All our recrystallization processes for (E, Z)-5, (E, E)-4, and 6 were performed in the dark.
21 G.M. Sheldrick, shelx86: Programs for the Automatic Solution of Crystal Structures, University of Göttingen, Germany, 1986.
22 W.R. Busing, K.O. Martin and H.S. Levy, ORFLS, Oak Ridge National Laboratory Report, ORNL-TM-305, Oak Ridge, TN, 1965.

[^0]: Correspondence to: Dr. M. Yoshifuij, Department of Chemistry, Faculty of Science, Tohoku University, Aoba, Sendai 980, Japan; or Dr. K. Hirotsu, Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi, Osaka 558, Japan.

[^1]: * Reference number with asterisk indicates a note in the list of references.

